Please use this identifier to cite or link to this item:
http://hdl.handle.net/20.500.11861/7650
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Liang, Yong | en_US |
dc.contributor.author | Prof. LEUNG Kwong Sak | en_US |
dc.date.accessioned | 2023-03-29T05:04:12Z | - |
dc.date.available | 2023-03-29T05:04:12Z | - |
dc.date.issued | 2002 | - |
dc.identifier.citation | Proceedings of the 2002 Congress on Evolutionary Computation, CEC 2002, 2002, Vol. 1, pp. 789 - 794, Article number 1007026 | en_US |
dc.identifier.uri | http://hdl.handle.net/20.500.11861/7650 | - |
dc.description.abstract | In this paper, a new two-way adaptive search mutation strategy is proposed, and a "two-way evolution strategy" (TWES) is established. The experimental results show that TWES yields much faster convergence than classical evolution strategies. This paper also discusses the relationship between the parameter setting and the convergent speed by TWES. © 2002 IEEE. | en_US |
dc.language.iso | en | en_US |
dc.publisher | IEEE Computer Society | en_US |
dc.relation.ispartof | Proceedings of the 2002 Congress on Evolutionary Computation, CEC 2002 | en_US |
dc.title | Two-way mutation evolution strategies | en_US |
dc.type | Conference Proceedings | en_US |
dc.identifier.doi | 10.1109/CEC.2002.1007026 | - |
item.fulltext | No Fulltext | - |
crisitem.author.dept | Department of Applied Data Science | - |
Appears in Collections: | Applied Data Science - Publication |
SCOPUSTM
Citations
2
checked on Nov 17, 2024
Page view(s)
26
Last Week
0
0
Last month
checked on Nov 21, 2024
Google ScholarTM
Impact Indices
Altmetric
PlumX
Metrics
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.