Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.11861/7646
DC FieldValueLanguage
dc.contributor.authorJin, Huidongen_US
dc.contributor.authorProf. LEUNG Kwong Saken_US
dc.contributor.authorWong, Man-Leungen_US
dc.date.accessioned2023-03-29T04:47:51Z-
dc.date.available2023-03-29T04:47:51Z-
dc.date.issued2002-
dc.identifier.citationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2002, vol. 2412, pp. 569 - 575en_US
dc.identifier.isbn978-354044025-3-
dc.identifier.issn03029743-
dc.identifier.urihttp://hdl.handle.net/20.500.11861/7646-
dc.description.abstractIn this paper, we propose EMACF (Expectation- Maximization Algorithm for Clustering Features) to generate clusters from data summaries rather than data items directly. Incorporating with an adaptive grid-based data summarization procedure, we establish a scalable clustering algorithm: gEMACF. The experimental results show that gEMACF can generate more accurate results than other scalable clustering algorithms. The experimental results also indicate that gEMACF can run two order of magnitude faster than the traditional expectation-maximization algorithm with little loss of accuracy. © Springer-Verlag Berlin Heidelberg 2002.en_US
dc.language.isoenen_US
dc.publisherSpringer Verlagen_US
dc.relation.ispartofLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)en_US
dc.titleScaling-up model-based clustering algorithm by working on clustering featuresen_US
dc.typeConference Paperen_US
dc.identifier.doi10.1007/3-540-45675-9_86-
item.fulltextNo Fulltext-
crisitem.author.deptDepartment of Applied Data Science-
Appears in Collections:Applied Data Science - Publication
Show simple item record

SCOPUSTM   
Citations

2
checked on Nov 17, 2024

Page view(s)

41
Last Week
1
Last month
checked on Nov 21, 2024

Google ScholarTM

Impact Indices

Altmetric

PlumX

Metrics


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.