Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.11861/7640
DC FieldValueLanguage
dc.contributor.authorShum, Wing-Hoen_US
dc.contributor.authorJin, Hui-Dongen_US
dc.contributor.authorProf. LEUNG Kwong Saken_US
dc.contributor.authorWong, Man-Leungen_US
dc.date.accessioned2023-03-28T05:41:13Z-
dc.date.available2023-03-28T05:41:13Z-
dc.date.issued2002-
dc.identifier.citationProceedings - IEEE International Conference on Data Mining, ICDM, 2002, pp. 434 - 441en_US
dc.identifier.isbn0769517544-
dc.identifier.isbn978-076951754-4-
dc.identifier.issn15504786-
dc.identifier.urihttp://hdl.handle.net/20.500.11861/7640-
dc.description.abstractThe Self-Organizing Map (SOM) is a powerful tool in the exploratory phase of data mining. However, due to the dimensional conflict, the neighborhood preservation cannot always lead to perfect topology preservation. In this paper, we establish an Expanding SOM (ESOM) to detect and preserve better topology correspondence between the two spaces. Our experiment results demonstrate that the ESOM constructs better mappings than the classic SOM in terms of both the topological and the quantization errors. Furthermore, clustering results generated by the ESOM are more accurate than those by the SOM. © 2002 IEEE.en_US
dc.language.isoenen_US
dc.relation.ispartofProceedings - IEEE International Conference on Data Mining, ICDMen_US
dc.titleA self-organizing map with expanding force for data clustering and visualizationen_US
dc.typeConference Proceedingsen_US
item.fulltextNo Fulltext-
crisitem.author.deptDepartment of Applied Data Science-
Appears in Collections:Applied Data Science - Publication
Show simple item record

Page view(s)

36
Last Week
0
Last month
checked on Nov 21, 2024

Google ScholarTM

Impact Indices

PlumX

Metrics


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.