Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.11861/7634
DC FieldValueLanguage
dc.contributor.authorCheang, Sin Manen_US
dc.contributor.authorLee, Kin Hongen_US
dc.contributor.authorProf. LEUNG Kwong Saken_US
dc.date.accessioned2023-03-28T04:46:59Z-
dc.date.available2023-03-28T04:46:59Z-
dc.date.issued2003-
dc.identifier.citationGenetic and Evolutionary Computation Conference, 2003, pp. 1918 - 1919.en_US
dc.identifier.isbn978-354040603-7-
dc.identifier.urihttp://hdl.handle.net/20.500.11861/7634-
dc.description.abstractA novel Linear Genetic Programming (LGP) paradigm called Genetic Parallel Programming (GPP) has been proposed to evolve parallel programs based on a Multi-ALU Processor. It is found that GPP can evolve parallel programs for Data Classification problems. In this paper, five binary-class UCI Machine Learning Repository databases are used to test the effectiveness of the proposed GPP-classifier. The main advantages of employing GPP for data classification are: 1) speeding up evolutionary process by parallel hardware fitness evaluation; and 2) discovering parallel algorithms automatically. Experimental results show that the GPP-classifier evolves simple classification programs with good generalization performance. The accuracies of these evolved classifiers are comparable to other existing classification algorithms. © Springer-Verlag Berlin Heidelberg 2003.en_US
dc.language.isoenen_US
dc.publisherSpringer Verlagen_US
dc.titleData classification using genetic parallel programmingen_US
dc.typeConference Paperen_US
dc.relation.conferenceGenetic and Evolutionary Computation Conferenceen_US
dc.identifier.doi10.1007/3-540-45110-2_88-
item.fulltextNo Fulltext-
crisitem.author.deptDepartment of Applied Data Science-
Appears in Collections:Applied Data Science - Publication
Show simple item record

SCOPUSTM   
Citations

5
checked on Apr 6, 2025

Page view(s)

46
Last Week
0
Last month
checked on Apr 7, 2025

Google ScholarTM

Impact Indices

Altmetric

PlumX

Metrics


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.