Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.11861/7627
DC FieldValueLanguage
dc.contributor.authorWong Y.-Y.en_US
dc.contributor.authorLee K.-H.en_US
dc.contributor.authorProf. LEUNG Kwong Saken_US
dc.contributor.authorHo C.-W.en_US
dc.date.accessioned2023-03-28T04:01:25Z-
dc.date.available2023-03-28T04:01:25Z-
dc.date.issued2003-
dc.identifier.citationSoft Computing, 2003, Vol. 7 (8), pp. 506 - 515en_US
dc.identifier.issn14337479-
dc.identifier.urihttp://hdl.handle.net/20.500.11861/7627-
dc.description.abstractIn this paper, we propose a probabilistic ruledriven adaptive model (PRAM) for parameter adaptation and a repelling approach for diversity maintenance in genetic algorithms. PRAM uses three parameter values and a set of greedy rules to adapt the value of the control parameters automatically. The repelling algorithm is proposed to maintain the population diversity. It modifies the fitness value to increase the survival opportunity of chromosomes with rare alleles. The computation overheads of repelling are reduced by the lazy repelling algorithm, which decreases the frequency of the diversity fitness evaluations. From experiments with commonly used benchmark functions, it is found that the PRAM and repelling techniques outperform other approaches on both solution quality and efficiency. © Springer-Verlag 2003.en_US
dc.language.isoenen_US
dc.relation.ispartofSoft Computingen_US
dc.titleA novel approach in parameter adaptation and diversity maintenance for genetic algorithmsen_US
dc.typePeer Reviewed Journal Articleen_US
dc.identifier.doi10.1007/s00500-002-0235-1-
item.fulltextNo Fulltext-
crisitem.author.deptDepartment of Applied Data Science-
Appears in Collections:Applied Data Science - Publication
Show simple item record

SCOPUSTM   
Citations

55
checked on Nov 17, 2024

Page view(s)

28
Last Week
1
Last month
checked on Nov 21, 2024

Google ScholarTM

Impact Indices

Altmetric

PlumX

Metrics


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.