Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.11861/7605
DC FieldValueLanguage
dc.contributor.authorJin, Huidongen_US
dc.contributor.authorProf. LEUNG Kwong Saken_US
dc.contributor.authorWong, Man-Leungen_US
dc.contributor.authorXu, Zong-Benen_US
dc.date.accessioned2023-03-27T04:02:20Z-
dc.date.available2023-03-27T04:02:20Z-
dc.date.issued2005-
dc.identifier.citationPattern Recognition, 2005, vol. 38 ( 5), pp. 637 - 649en_US
dc.identifier.issn00313203-
dc.identifier.urihttp://hdl.handle.net/20.500.11861/7605-
dc.description.abstractWe present two scalable model-based clustering systems based on a Gaussian mixture model with independent attributes within clusters. They first summarize data into sub-clusters, and then generate Gaussian mixtures from their clustering features using a new algorithm - EMACF. EMACF approximates the aggregate behavior of each sub-cluster of data items in the Gaussian mixture model. It provably converges. The experiments show that our clustering systems run one or two orders of magnitude faster than the traditional EM algorithm with few losses of accuracy. © 2004 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.en_US
dc.language.isoenen_US
dc.relation.ispartofPattern Recognitionen_US
dc.titleScalable model-based cluster analysis using clustering featuresen_US
dc.typePeer Reviewed Journal Articleen_US
dc.identifier.doi10.1016/j.patcog.2004.07.012-
item.fulltextNo Fulltext-
crisitem.author.deptDepartment of Applied Data Science-
Appears in Collections:Applied Data Science - Publication
Show simple item record

SCOPUSTM   
Citations

23
checked on Nov 17, 2024

Page view(s)

37
Last Week
0
Last month
checked on Nov 21, 2024

Google ScholarTM

Impact Indices

Altmetric

PlumX

Metrics


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.