Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.11861/7595
DC FieldValueLanguage
dc.contributor.authorWang, Zhenyuanen_US
dc.contributor.authorProf. LEUNG Kwong Saken_US
dc.contributor.authorKlir, George J.en_US
dc.date.accessioned2023-03-27T03:05:52Z-
dc.date.available2023-03-27T03:05:52Z-
dc.date.issued2005-
dc.identifier.citationFuzzy Sets and Systems, 2005, vol. 156 ( 3), pp. 371 - 380en_US
dc.identifier.issn01650114-
dc.identifier.urihttp://hdl.handle.net/20.500.11861/7595-
dc.description.abstractThe paper gives an overview of applying fuzzy measures and relevant nonlinear integrals in data mining, discussed in five application areas: set function identification, nonlinear multiregression, nonlinear classification, networks, and fuzzy data analysis. In these areas, fuzzy measures allow us to describe interactions among feature attributes towards a certain target (objective attribute), while nonlinear integrals serve as aggregation tools to combine information from feature attributes. Values of fuzzy measures in these applications are unknown and are optimally determined via a soft computing technique based on given data. © 2005 Published by Elsevier B.V.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofFuzzy Sets and Systemsen_US
dc.titleApplying fuzzy measures and nonlinear integrals in data miningen_US
dc.typePeer Reviewed Journal Articleen_US
dc.identifier.doi10.1016/j.fss.2005.05.034-
item.fulltextNo Fulltext-
crisitem.author.deptDepartment of Applied Data Science-
Appears in Collections:Applied Data Science - Publication
Show simple item record

SCOPUSTM   
Citations

73
checked on Nov 17, 2024

Page view(s)

34
Last Week
1
Last month
checked on Nov 21, 2024

Google ScholarTM

Impact Indices

Altmetric

PlumX

Metrics


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.