Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.11861/7567
DC FieldValueLanguage
dc.contributor.authorLi, Wenyeen_US
dc.contributor.authorLee, Kin-Hongen_US
dc.contributor.authorProf. LEUNG Kwong Saken_US
dc.date.accessioned2023-03-24T02:07:44Z-
dc.date.available2023-03-24T02:07:44Z-
dc.date.issued2007-
dc.identifier.citationACM International Conference Proceeding Series, 2007, vol. 227, pp. 529 - 536en_US
dc.identifier.urihttp://hdl.handle.net/20.500.11861/7567-
dc.description.abstractThe advances in kernel-based learning necessitate the study on solving a large-scale non-sparse positive definite linear system. To provide a deterministic approach, recent researches focus on designing fast matrix-vector multiplication techniques coupled with a conjugate gradient method. Instead of using the conjugate gradient method, our paper proposes to use a domain decomposition approach in solving such a linear system. Its convergence property and speed can be understood within von Neumann's alternating projection framework. We will report signi ficant and consistent improvements in convergence speed over the conjugate gradient method when the approach is applied to recent machine learning problems.en_US
dc.language.isoenen_US
dc.relation.ispartofACM International Conference Proceeding Seriesen_US
dc.titleLarge-scale RLSC learning without agonyen_US
dc.typeConference Paperen_US
dc.identifier.doi10.1145/1273496.1273563-
item.fulltextNo Fulltext-
crisitem.author.deptDepartment of Applied Data Science-
Appears in Collections:Applied Data Science - Publication
Show simple item record

SCOPUSTM   
Citations

12
checked on Nov 17, 2024

Page view(s)

29
Last Week
1
Last month
checked on Nov 24, 2024

Google ScholarTM

Impact Indices

Altmetric

PlumX

Metrics


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.