Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.11861/7558
DC FieldValueLanguage
dc.contributor.authorSung, Joseph J. Y.en_US
dc.contributor.authorTsui, Stephen K. W.en_US
dc.contributor.authorTse, Chi-Hangen_US
dc.contributor.authorNg, Eddie Y. T.en_US
dc.contributor.authorProf. LEUNG Kwong Saken_US
dc.contributor.authorLee, Kin-Hongen_US
dc.contributor.authorMok, Tony S. Ken_US
dc.contributor.authorBartholomeusz, Angelineen_US
dc.contributor.authorAu, Thomas C. C.en_US
dc.contributor.authorTsoi, Kelvin K. F.en_US
dc.contributor.authorLocarnini, Stephenen_US
dc.contributor.authorChan, Henry L. Y.en_US
dc.date.accessioned2023-03-23T05:26:29Z-
dc.date.available2023-03-23T05:26:29Z-
dc.date.issued2008-
dc.identifier.citationJournal of Virology, 2008, Vol. 82 (7), pp. 3604 - 3611en_US
dc.identifier.issn0022538X-
dc.identifier.urihttp://hdl.handle.net/20.500.11861/7558-
dc.description.abstractWe aimed to identify genomic markers in hepatitis B virus (HBV) that are associated with hepatocellular carcinoma (HCC) development by comparing the complete genomic sequences of HBVs among patients with HCC and those without. One hundred patients with HBV-related HCC and 100 age-matched HBV-infected non-HCC patients (controls) were studied. HBV DNA from serum was directly sequenced to study the whole viral genome. Data mining and rule learning were employed to develop diagnostic algorithms. An independent cohort of 132 cases (43 HCC and 89 non-HCC) was used to validate the accuracy of these algorithms. Among the 100 cases of HCC, 37 had genotype B (all subgenotype Ba) and 63 had genotype C (16 subgenotype Ce and 47 subgenotype Cs) HBV infection. In the control group, 51 had genotype B and 49 had genotype C (10 subgenotype Ce and 39 subgenotype Cs) HBV infection. Genomic algorithms associated with HCC were derived based on genotype/subgenotype-specific mutations. In genotype B HBV, mutations C1165T, A1762T and G1764A, T2712C/A/G, and A/T2525C were associated with HCC. HCC-related mutations T31C, T53C, and A1499G were associated with HBV subgenotype Ce, and mutations G1613A, G1899A, T2170C/G, and T2441C were associated with HBV subgenotype Cs. Amino acid changes caused by these mutations were found in the X, envelope, and precore/core regions in association with HBV genotype B, Ce, and Cs, respectively. In conclusion, infections with different genotypes of HBV (B, Ce, and Cs) carry different genomic markers for HCC at different parts of the HBV genome. Different HBV genotypes may have different virologic mechanisms of hepatocarcinogenesis. Copyright © 2008, American Society for Microbiology. All Rights Reserved.en_US
dc.language.isoenen_US
dc.relation.ispartofJournal of Virologyen_US
dc.titleGenotype-specific genomic markers associated with primary hepatomas, based on complete genomic sequencing of hepatitis B virusen_US
dc.typePeer Reviewed Journal Articleen_US
dc.identifier.doi10.1128/JVI.01197-07-
item.fulltextNo Fulltext-
crisitem.author.deptDepartment of Applied Data Science-
Appears in Collections:Applied Data Science - Publication
Show simple item record

SCOPUSTM   
Citations

52
checked on Nov 17, 2024

Page view(s)

34
Last Week
0
Last month
checked on Nov 21, 2024

Google ScholarTM

Impact Indices

Altmetric

PlumX

Metrics


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.