Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.11861/7554
DC FieldValueLanguage
dc.contributor.authorWang, Jin Fengen_US
dc.contributor.authorProf. LEUNG Kwong Saken_US
dc.contributor.authorLee, Kin hongen_US
dc.contributor.authorWang, Zhen yuanen_US
dc.date.accessioned2023-03-23T05:01:18Z-
dc.date.available2023-03-23T05:01:18Z-
dc.date.issued2008-
dc.identifier.citationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2008, vol. 5077 LNAI, pp. 142 - 152en_US
dc.identifier.isbn3540707174-
dc.identifier.isbn978-354070717-2-
dc.identifier.issn16113349-
dc.identifier.urihttp://hdl.handle.net/20.500.11861/7554-
dc.description.abstractIn this study, a new classification model based on projection with Double Nonlinear Integrals is proposed. There exist interactions among predictive attributes towards the decisive attribute. The contribution rate of each combination of predictive attributes, including each singleton, towards the decisive attribute can be re presented by a fuzzy measure. We use Double Nonlinear Integrals with respect to the signed fuzzy measure to project data to 2-Dimension space. Then classify the virtual value in the 2-D space projected by Nonlinear Integrals. In our experiments, we compare our classifier based on projection with Double Nonlinear Integrals with the classical method- Naïve Bayes. The results show that our classification model is better than Naïve Bayes. © 2008 Springer-Verlag.en_US
dc.language.isoenen_US
dc.relation.ispartofLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)en_US
dc.titleProjection with double nonlinear integrals for classificationen_US
dc.typeConference Paperen_US
dc.identifier.doi10.1007/978-3-540-70720-2_11-
item.fulltextNo Fulltext-
crisitem.author.deptDepartment of Applied Data Science-
Appears in Collections:Applied Data Science - Publication
Show simple item record

SCOPUSTM   
Citations

1
checked on Nov 17, 2024

Page view(s)

31
Last Week
0
Last month
checked on Nov 21, 2024

Google ScholarTM

Impact Indices

Altmetric

PlumX

Metrics


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.