Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.11861/7515
DC FieldValueLanguage
dc.contributor.authorLiu, Chengen_US
dc.contributor.authorLiang, Yongen_US
dc.contributor.authorLuan, Xin-Zeen_US
dc.contributor.authorProf. LEUNG Kwong Saken_US
dc.contributor.authorChan, Tak-Mingen_US
dc.contributor.authorXu, Zong-Benen_US
dc.contributor.authorZhang, Haien_US
dc.date.accessioned2023-03-17T03:29:16Z-
dc.date.available2023-03-17T03:29:16Z-
dc.date.issued2012-
dc.identifier.citationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 7332 LNCS(PART 2), pp. 11-17en_US
dc.identifier.isbn978-364231019-5-
dc.identifier.issn16113349-
dc.identifier.urihttp://hdl.handle.net/20.500.11861/7515-
dc.description.abstractIn this paper, we investigate to use theL1/2 regularization method for variable selection based on the Cox's proportional hazards model. The L1/2 regularization method isa reweighed iterative algorithm with the adaptively weighted L1 penalty on regression coefficients. The algorithm of the L1/2 regularization method can be easily obtained by a series of L1 penalties. Simulation results based on standard artificial data show that the L1/2 regularization method can be more accurate for variable selection than Lasso and adaptive Lasso methods. The results from Primary Biliary Cirrhosis (PBC) dataset indicate the L 1/2 regularization method performs competitively. © 2012 Springer-Verlag.en_US
dc.language.isoenen_US
dc.relation.ispartofLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)en_US
dc.titleIterative L1/2 regularization algorithm for variable selection in the Cox proportional hazards modelen_US
dc.typeConference Paperen_US
dc.identifier.doi10.1007/978-3-642-31020-1_2-
item.fulltextNo Fulltext-
crisitem.author.deptDepartment of Applied Data Science-
Appears in Collections:Applied Data Science - Publication
Show simple item record

Page view(s)

35
Last Week
0
Last month
checked on Dec 20, 2024

Google ScholarTM

Impact Indices

Altmetric

PlumX

Metrics


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.