Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.11861/7505
DC FieldValueLanguage
dc.contributor.authorLiu, Xiao-Yingen_US
dc.contributor.authorLiang, Yongen_US
dc.contributor.authorXu, Zong-Benen_US
dc.contributor.authorZhang, Haien_US
dc.contributor.authorProf. LEUNG Kwong Saken_US
dc.date.accessioned2023-03-16T04:32:05Z-
dc.date.available2023-03-16T04:32:05Z-
dc.date.issued2013-
dc.identifier.citationThe Scientific World Journal , 2013,475702en_US
dc.identifier.urihttp://hdl.handle.net/20.500.11861/7505-
dc.description.abstractA new adaptive shooting regularization method for variable selection based on the Cox’s proportional hazards mode being proposed. This adaptive shooting algorithm can be easily obtained by the optimization of a reweighed iterative series of penalties and a shooting strategy of penalty. Simulation results based on high dimensional artificial data show that the adaptive shooting regularization method can be more accurate for variable selection than Lasso and adaptive Lasso methods. The results from real gene expression dataset (DLBCL) also indicate that the regularization method performs competitively.en_US
dc.language.isoenen_US
dc.relation.ispartofThe Scientific World Journalen_US
dc.titleAdaptive L1/2 shooting regularization method for survival analysis using gene expression data Open Accessen_US
dc.typePeer Reviewed Journal Articleen_US
dc.identifier.doi10.1155/2013/475702-
item.fulltextNo Fulltext-
crisitem.author.deptDepartment of Applied Data Science-
Appears in Collections:Applied Data Science - Publication
Show simple item record

SCOPUSTM   
Citations

9
checked on Nov 17, 2024

Page view(s)

33
Last Week
1
Last month
checked on Nov 24, 2024

Google ScholarTM

Impact Indices

Altmetric

PlumX

Metrics


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.