Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.11861/7501
DC FieldValueLanguage
dc.contributor.authorLuan, Xin-Zeen_US
dc.contributor.authorLiang, Yongen_US
dc.contributor.authorLiu, Chengen_US
dc.contributor.authorProf. LEUNG Kwong Saken_US
dc.contributor.authorChan, Tak-Mingen_US
dc.contributor.authorXu , Zong-Benen_US
dc.contributor.authorZhang, Haien_US
dc.date.accessioned2023-03-16T03:44:52Z-
dc.date.available2023-03-16T03:44:52Z-
dc.date.issued2014-
dc.identifier.citationSoft Computing, 2014, vol. 18, pp.143–152en_US
dc.identifier.urihttp://hdl.handle.net/20.500.11861/7501-
dc.description.abstractNowadays, a series of methods are based on a L 1 penalty to solve the variable selection problem for a Cox’s proportional hazards model. In 2010, Xu et al. have proposed a L 1/2 regularization and proved that the L 1/2 penalty is sparser than the L 1 penalty in linear regression models. In this paper, we propose a novel shooting method for the L 1/2 regularization and apply it on the Cox model for variable selection. The experimental results based on comprehensive simulation studies, real Primary Biliary Cirrhosis and diffuse large B cell lymphoma datasets show that the L 1/2 regularization shooting method performs competitively.en_US
dc.language.isoenen_US
dc.relation.ispartofSoft Computingen_US
dc.titleA novel L1/2 regularization shooting method for Cox’s proportional hazards modelen_US
dc.typePeer Reviewed Journal Articleen_US
dc.identifier.doi10.1007/s00500-013-1042-6-
item.fulltextNo Fulltext-
crisitem.author.deptDepartment of Applied Data Science-
Appears in Collections:Applied Data Science - Publication
Show simple item record

SCOPUSTM   
Citations

2
checked on Nov 17, 2024

Page view(s)

35
Last Week
0
Last month
checked on Nov 24, 2024

Google ScholarTM

Impact Indices

Altmetric

PlumX

Metrics


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.