Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.11861/7495
DC FieldValueLanguage
dc.contributor.authorChu, Jingen_US
dc.contributor.authorWang, Zhenyuanen_US
dc.contributor.authorShi, Yongen_US
dc.contributor.authorProf. LEUNG Kwong Saken_US
dc.date.accessioned2023-03-16T03:11:41Z-
dc.date.available2023-03-16T03:11:41Z-
dc.date.issued2014-
dc.identifier.citationAnnals of Data Science, 2014, vol. 1, pp. 109–125en_US
dc.identifier.urihttp://hdl.handle.net/20.500.11861/7495-
dc.description.abstractA new nonlinear multiregression model based on a pair of extreme nonlinear integrals, lower and upper integrals, is established in this paper. A complete data set of predictive attributes and the relevant objective attribute is required for estimating the regression coefficients. Due to the nonadditivity of the model, a genetic algorithm combined with the pseudo gradient search is adopted to search the optimized solution in the regression problem. Applying such a nonlinear multiregression model, an interval prediction for the value of the objective attribute can be made once a new observation of predictive attributes is available.en_US
dc.language.isoenen_US
dc.relation.ispartofAnnals of Data Scienceen_US
dc.titleA New Nonlinear Multiregression Model Based on the Lower and Upper Integralsen_US
dc.typePeer Reviewed Journal Articleen_US
dc.identifier.doi10.1007/s40745-014-0008-6-
item.fulltextNo Fulltext-
crisitem.author.deptDepartment of Applied Data Science-
Appears in Collections:Applied Data Science - Publication
Show simple item record

Page view(s)

28
Last Week
1
Last month
checked on Nov 21, 2024

Google ScholarTM

Impact Indices

Altmetric

PlumX

Metrics


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.