Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.11861/7489
DC FieldValueLanguage
dc.contributor.authorWang, Jinfengen_US
dc.contributor.authorProf. LEUNG Kwong Saken_US
dc.contributor.authorLee, Kin-Hongen_US
dc.contributor.authorWang, Wenzhongen_US
dc.date.accessioned2023-03-15T03:32:33Z-
dc.date.available2023-03-15T03:32:33Z-
dc.date.issued2015-
dc.identifier.citationJournal of Intelligent & Fuzzy Systems, 2015, vol. 28 (4), pp. 1635-1645en_US
dc.identifier.urihttp://hdl.handle.net/20.500.11861/7489-
dc.description.abstractIn this study, a new classification model - Multiple Nonlinear Integral with Multiple projections is proposed, which includes Double Nonlinear Integral extending to new variants for adapting for complicated data distribution and enhancing classification accuracy. When the performance is not satisfying by projecting with classical Nonlinear Integral, the second projection is need to stretch data in one dimension space to two dimension space. The value of two projection forms the 2-dimensional coordinates. All data in two-dimensional space can be classified by a straight line easily. The rest may be deduced by analogy, if the result is still not good for decision, the Multiple Nonlinear Integral can repeat n times double projections, in which n will be an optimized value to balance the performance and the complexity. The repeating can help adjust the data distribution in 2-dimensional space until being classified easily. The classification model based on Multiple Nonlinear Integral is applied to two kinds of datasets. One kind comes from the classical database; another kind is the real data about the HBV (Hepatitis B Virus) collected from hospital. The experimental results show that the new model has better performance compared with the classical algorithm and the classical Nonlinear Integral. Especially to the HBV data, Multiple Nonlinear Integral presents the superior on diagnosis to the others.en_US
dc.language.isoenen_US
dc.relation.ispartofJournal of Intelligent & Fuzzy Systemsen_US
dc.titleMultiple nonlinear integral for classificationen_US
dc.typePeer Reviewed Journal Articleen_US
dc.identifier.doi10.3233/IFS-141449-
item.fulltextNo Fulltext-
crisitem.author.deptDepartment of Applied Data Science-
Appears in Collections:Applied Data Science - Publication
Show simple item record

SCOPUSTM   
Citations

1
checked on Nov 17, 2024

Page view(s)

24
Last Week
1
Last month
checked on Nov 24, 2024

Google ScholarTM

Impact Indices

Altmetric

PlumX

Metrics


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.