Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.11861/7429
DC FieldValueLanguage
dc.contributor.authorWong, Wai Chungen_US
dc.contributor.authorLai, Sunnyen_US
dc.contributor.authorLam, Waien_US
dc.contributor.authorProf. LEUNG Kwong Saken_US
dc.date.accessioned2023-02-22T11:33:21Z-
dc.date.available2023-02-22T11:33:21Z-
dc.date.issued2018-11-
dc.identifier.citationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 11292 LNCS, pp. 133-139en_US
dc.identifier.urihttp://hdl.handle.net/20.500.11861/7429-
dc.description.abstractHuman experts can often easily write a set of approximate rules based on their domain knowledge for supporting automatic text classification. While such approximate rules are able to conduct classification at a general level, they are not effective for handling diverse and specific situations for a particular category. Given a set of approximate rules and a moderate amount of labeled data, existing incremental text classification learning models can be employed for tackling this problem by continuous rule refinement. However, these models lack the consideration of context information, which inherently exists in data. We propose a framework comprising rule embeddings and context embeddings derived from data to enhance the adaptability of approximate rules via considering the context information. We conduct extensive experiments and the results demonstrate that our proposed framework performs better than existing models in some benchmarking datasets, indicating that learning the context of rules is constructive for improving text classification performance.en_US
dc.language.isoenen_US
dc.publisherSpringer, Chamen_US
dc.relation.ispartofAIRS 2018en_US
dc.titleGuiding Approximate Text Classification Rules via Context Informationen_US
dc.typeConference Paperen_US
dc.identifier.doi10.1007/978-3-030-03520-4_13-
item.fulltextNo Fulltext-
crisitem.author.deptDepartment of Applied Data Science-
Appears in Collections:Applied Data Science - Publication
Show simple item record

Page view(s)

54
Last Week
1
Last month
checked on Nov 21, 2024

Google ScholarTM

Impact Indices

Altmetric

PlumX

Metrics


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.