Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.11861/7416
DC FieldValueLanguage
dc.contributor.authorLi, Shuaien_US
dc.contributor.authorChen,Weien_US
dc.contributor.authorLi, Shuaien_US
dc.contributor.authorProf. LEUNG Kwong Saken_US
dc.date.accessioned2023-02-22T07:34:44Z-
dc.date.available2023-02-22T07:34:44Z-
dc.date.issued2019-
dc.identifier.citationIJCAI International Joint Conference on Artificial Intelligence 2019, pp. 2923-2929.en_US
dc.identifier.urihttp://hdl.handle.net/20.500.11861/7416-
dc.description.abstractWe generalize the setting of online clustering of bandits by allowing non-uniform distribution over user frequencies. A more efficient algorithm is proposed with simple set structures to represent clusters. We prove a regret bound for the new algorithm which is free of the minimal frequency over users. The experiments on both synthetic and real datasets consistently show the advantage of the new algorithm over existing methods.en_US
dc.language.isoenen_US
dc.titleImproved Algorithm on Online Clustering of Banditsen_US
dc.typeConference Paperen_US
dc.relation.conferenceIJCAI International Joint Conference on Artificial Intelligence 2019-Augusten_US
dc.identifier.doi10.24963/ijcai.2019/405-
item.fulltextNo Fulltext-
crisitem.author.deptDepartment of Applied Data Science-
Appears in Collections:Applied Data Science - Publication
Show simple item record

SCOPUSTM   
Citations

29
checked on Nov 17, 2024

Page view(s)

48
Last Week
2
Last month
checked on Nov 21, 2024

Google ScholarTM

Impact Indices

Altmetric

PlumX

Metrics


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.