Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.11861/10470
DC FieldValueLanguage
dc.contributor.authorDr. NAWAZ Mehmooden_US
dc.contributor.authorXie, Rongen_US
dc.contributor.authorZhang, Liangen_US
dc.contributor.authorAsfandyar, Maliken_US
dc.contributor.authorHussain, Muddsseren_US
dc.date.accessioned2024-09-07T08:14:10Z-
dc.date.available2024-09-07T08:14:10Z-
dc.date.issued2016-
dc.identifier.citationNawaz, M., Xie, R., Zhang, L., Asfandyar, M., & Hussain, M. (2016). Image super resolution by sparse linear regression and iterative back projection. In BMSB (Ed.). 2016 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB). 2016 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), Nara, Japan. IEEE.en_US
dc.identifier.isbn9781467390446-
dc.identifier.isbn9781467390453-
dc.identifier.issn2155-5052-
dc.identifier.urihttp://hdl.handle.net/20.500.11861/10470-
dc.description.abstractThis paper presents a method which focus on the increase of visual quality of SR image reconstructed from input low resolution image. Similar to the framework as exploited in [1], a modified algorithm is developed which is based on sparse linear regression and iterative back projection. Different from the techniques used in [1] [6], a feature sign search algorithm [17] is used to find the relevant features of the regression function under a priori assumption. Furthermore, a modified Gaussian high pass filter is additionally used for the refinement of the initial reconstructed SR image through iterative back-projection technique to reduce visual artifacts. Experimental results conclude that this modified approach achieves better quality of reconstructed SR images than the other similar SR methods.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.titleImage super resolution by sparse linear regression and iterative back projectionen_US
dc.typeConference Paperen_US
dc.relation.conference2016 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB)en_US
dc.identifier.doi10.1109/BMSB.2016.7521905-
item.fulltextNo Fulltext-
crisitem.author.deptDepartment of Applied Data Science-
Appears in Collections:Applied Data Science - Publication
Show simple item record

SCOPUSTM   
Citations

6
checked on Dec 15, 2024

Page view(s)

22
Last Week
0
Last month
checked on Dec 20, 2024

Google ScholarTM

Impact Indices

Altmetric

PlumX

Metrics


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.