Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.11861/10456
DC FieldValueLanguage
dc.contributor.authorHu, Xiaoen_US
dc.contributor.authorZhang, Yinfeien_US
dc.contributor.authorChu, Samuelen_US
dc.contributor.authorDr. KE Xiaobo, Boben_US
dc.date.accessioned2024-09-07T02:32:26Z-
dc.date.available2024-09-07T02:32:26Z-
dc.date.issued2016-
dc.identifier.citationHu, X., Zhang, Y., Chu, S., & Ke, X. (2016). Towards personalizing an e-quiz bank for primary school students: An exploration with association rule mining and clustering. In Gasevic, D., Lynch, G., Dawson, S., Drachsler, H., & Penstein-R.(Eds.). LAK ’16 Conference Proceedings. The Sixth International Learning Analytics & Knowledge Conference, The University of Edinburgh, Edinburgh, United Kingdom (pp. 25-29). The Association for Computing Machinery.en_US
dc.identifier.isbn9781450341905-
dc.identifier.urihttp://hdl.handle.net/20.500.11861/10456-
dc.description.abstractGiven the importance of reading proficiency and habits for young students, an online e-quiz bank, Reading Battle, was launched in 2014 to facilitate reading improvement for primary-school students. With more than ten thousand questions in both English and Chinese, the system has attracted nearly five thousand learners who have made about half a million question answering records. In an effort towards delivering personalized learning experience to the learners, this study aims to discover potentially useful knowledge from learners' reading and question answering records in the Reading Battle system, by applying association rule mining and clustering analysis. The results show that learners could be grouped into three clusters based on their self-reported reading habits. The rules mined from different learner clusters can be used to develop personalized recommendations to the learners. Implications of the results on evaluating and further improving the Reading Battle system are also discussed.en_US
dc.language.isoenen_US
dc.publisherThe Association for Computing Machineryen_US
dc.titleTowards personalizing an e-quiz bank for primary school students: An exploration with association rule mining and clusteringen_US
dc.typeConference Paperen_US
dc.relation.conferenceLAK '16: 6th International Conference on Learning Analytics and Knowledgeen_US
dc.identifier.doihttps://doi.org/10.1145/2883851.2883959-
item.fulltextNo Fulltext-
crisitem.author.deptDepartment of Applied Data Science-
Appears in Collections:Applied Data Science - Publication
Show simple item record

Page view(s)

20
Last Week
0
Last month
checked on Nov 24, 2024

Google ScholarTM

Impact Indices

Altmetric

PlumX

Metrics


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.