Options
Unraveling the complexity of optical coherence tomography image segmentation using machine and deep learning techniques: A review
Date Issued
2023
ISSN
0895-6111
1879-0771
Citation
Computerized Medical Imaging and Graphics, 2023, vol. 108, article, no. 102269.
Type
Peer Reviewed Journal Article
Abstract
Optical Coherence Tomography (OCT) is an emerging technology that provides three-dimensional images of the microanatomy of biological tissue in-vivo and at micrometer-scale resolution. OCT imaging has been widely used to diagnose and manage various medical diseases, such as macular degeneration, glaucoma, and coronary artery disease. Despite its wide range of applications, the segmentation of OCT images remains difficult due to the complexity of tissue structures and the presence of artifacts. In recent years, different approaches have been used for OCT image segmentation, such as intensity-based, region-based, and deep learning-based methods. This paper reviews the major advances in state-of-the-art OCT image segmentation techniques. It provides an overview of the advantages and limitations of each method and presents the most relevant research works related to OCT image segmentation. It also provides an overview of existing datasets and discusses potential clinical applications. Additionally, this review gives an in-depth analysis of machine learning and deep learning approaches for OCT image segmentation. It outlines challenges and opportunities for further research in this field.
Loading...
Availability at HKSYU Library
