Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.11861/8267
DC FieldValueLanguage
dc.contributor.authorProf. YU Kai Ching, Calvinen_US
dc.date.accessioned2023-10-16T05:14:50Z-
dc.date.available2023-10-16T05:14:50Z-
dc.date.issued2023-
dc.identifier.citationInternational Journal of Dream Research, Oct. 2023, vol. 16(2), pp. 150-159.en_US
dc.identifier.issn1866-7953-
dc.identifier.urihttp://hdl.handle.net/20.500.11861/8267-
dc.description.abstractThis study investigated the prevalence of delusion sentiment in dreams using machine learning-based measurement. Classification models were developed by training the SVM (support-vector machine) algorithm with 841 words relevant to grandiose delusions and 978 words relating to persecutory delusions. They were then utilized to score grandiose and persecutory sentiment in 2611 dreams primarily obtained from an open source, including dreams reported by American, Chinese, German, and Peruvian people. The classification accuracy of the SVM model for detecting grandiose words was 86.4%, that for detecting persecutory words being 97.6%. The prevalence rates of dream reports being classified by the SVM algorithms as grandiose and persecutory dreams in the entire dream collection were 12.2% and 11.2%, respectively. Overall, around a quarter of dreams exhibited delusional content, which is more prevalent than the epidemiological estimate of psychosis in waking life – that is, approximately 0.3% worldwide. Given its fine-grained scoring, cost-efficiency, and absence of subjective judgment, the SVM method can be a useful tool for coding delusional sentiment in dreams.en_US
dc.language.isoenen_US
dc.relation.ispartofInternational Journal of Dream Researchen_US
dc.titleMachine learning-based measurement of delusional dreamingen_US
dc.typePeer Reviewed Journal Articleen_US
dc.identifier.doi10.11588/ijodr.2023.2.94934-
item.fulltextNo Fulltext-
crisitem.author.deptDepartment of Counselling & Psychology-
Appears in Collections:Counselling and Psychology - Publication
Show simple item record

Page view(s)

52
Last Week
3
Last month
checked on Nov 21, 2024

Google ScholarTM

Impact Indices

Altmetric

PlumX

Metrics


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.