Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.11861/7632
Title: Improving evolvability of genetic parallel programming using dynamic sample weighting
Authors: Cheang, Sin Man 
Lee, Kin Hong 
Prof. LEUNG Kwong Sak 
Issue Date: 2003
Publisher: Springer Berlin, Heidelberg
Source: Cheang, Sin Man, Lee, Kin Hong & Leung, Kwong Sak (2003). Improving evolvability of genetic parallel programming using dynamic sample weighting. In Cantú-Paz, Erick, Foster, James A., Deb, Kalyanmoy, Davis, Lawrence David, Roy, Rajkumar, O'Reilly, Una-May, Beyer, Hans Georg, Standish, Russell, Kendall, Graham, Wilson, Stewart, Harman, Mark, Wegener, Joachim, Dasgupta, Dipankar, Potter, Mitch A., Schultz, Alan C., Dowsland, Kathryn A.. Jonoska, Natasha & Miller, Julian (Eds.). Genetic and Evolutionary Computation — GECCO 2003. GECCO 2003, Chicago, USA (1802-1803). Springer Berlin, Heidelberg.
Conference: Genetic and Evolutionary Computation — GECCO 2003 
Abstract: This paper investigates the sample weighting effect on Genetic Parallel Programming (GPP) that evolves parallel programs to solve the training samples captured directly from a real-world system. The distribution of these samples can be extremely biased. Standard GPP assigns equal weights to all samples. It slows down evolution because crowded regions of samples dominate the fitness evaluation and cause premature convergence. This paper compares the performance of four sample weighting (SW) methods, namely, Equal SW (ESW), Class-equal SW (CSW), Static SW (SSW) and Dynamic SW (DSW) on five training sets. Experimental results show that DSW is superior in performance on tested problems. © Springer-Verlag Berlin Heidelberg 2003.
Type: Conference Paper
URI: http://hdl.handle.net/20.500.11861/7632
ISBN: 9783540451105
9783540406037
ISSN: 03029743
DOI: 10.1007/3-540-45110-2_72
Appears in Collections:Applied Data Science - Publication

Show full item record

Page view(s)

29
Last Week
0
Last month
checked on Nov 21, 2024

Google ScholarTM

Impact Indices

Altmetric

PlumX

Metrics


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.