Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.11861/7552
DC FieldValueLanguage
dc.contributor.authorLi, Gangen_US
dc.contributor.authorChan, Tak-Mingen_US
dc.contributor.authorProf. LEUNG Kwong Saken_US
dc.contributor.authorLee, Kin-Hongen_US
dc.date.accessioned2023-03-23T04:51:42Z-
dc.date.available2023-03-23T04:51:42Z-
dc.date.issued2008-
dc.identifier.citation2008 IEEE Congress on Evolutionary Computation, CEC 2008, pp. 2411 - 2418, 2008, Article number 4631120en_US
dc.identifier.isbn978-142441823-7-
dc.identifier.urihttp://hdl.handle.net/20.500.11861/7552-
dc.description.abstractThe problem of Transcription Factor Binding Sites identification or motif discovery is to identify the motif binding sites in the cis-regulatory regions of DNA sequences. The biological experiments are expensive and the problem is NP-hard computationally. We have proposed Estimation of Distribution Algorithm for Motif Discovery (EDAMD). We use Bayesian analysis to derive the fitness function to measure the posterior probability of a set of motif instances, which can be used to handle a variable number of motif instances in the sequences. EDAMD adopts a Gaussian distribution to model the distribution of the sets of motif instances, which is capable of capturing the bivariate correlation among the positions of motif instances. When a new Position Frequency Matrix (PFM) is generated from the Gaussian distribution, a new set of motif instances is identified based on the PFM via the Greedy Refinement operation. At the end of a generation, the Gaussian distribution is updated with the sets of motif instances. Since Greedy Refinement assumes a single motif instance on a sequence, a Post Processing operation based on the fitness function is used to find more motif instances after the evolution. The experiments have verified that EDAMD is comparable to or better than GAME and GALF on the real problems tested in this paper. © 2008 IEEE.en_US
dc.language.isoenen_US
dc.relation.ispartof2008 IEEE Congress on Evolutionary Computation, CEC 2008en_US
dc.titleAn Estimation of Distribution Algorithm for Motif Discoveryen_US
dc.typeConference Paperen_US
dc.identifier.doi10.1109/CEC.2008.4631120-
item.fulltextNo Fulltext-
crisitem.author.deptDepartment of Applied Data Science-
Appears in Collections:Applied Data Science - Publication
Show simple item record

SCOPUSTM   
Citations

5
checked on Nov 17, 2024

Page view(s)

30
Last Week
0
Last month
checked on Nov 21, 2024

Google ScholarTM

Impact Indices

Altmetric

PlumX

Metrics


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.