Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.11861/6493
DC FieldValueLanguage
dc.contributor.authorCheung, Michael Towen_US
dc.contributor.authorProf. YEUNG Wing Kay, Daviden_US
dc.contributor.authorLai, Alfreden_US
dc.date.accessioned2021-03-06T06:22:45Z-
dc.date.available2021-03-06T06:22:45Z-
dc.date.issued1993-
dc.identifier.citationIn Karmann, A., Mosler, K., Schader, M., & Uebe, G. (eds.) (1993). Operations Research ’92 (pp. 541-543).en_US
dc.identifier.isbn9783790806793-
dc.identifier.isbn9783662126295-
dc.identifier.urihttp://hdl.handle.net/20.500.11861/6493-
dc.description.abstractThough geometric Brownian motion (GBM) is an essential tool in finance, a closed form solution for its transition density function has yet to be obtained. In option pricing, though Black and Scholes assumed GBM stock price dynamics, they transformed the problem to allow an option to be evaluated without the stock price’s transition density. This paper presents a closed form solution of Kolmogorov’s backward equation for GBM. As an application, the option price equation is derived directly.en_US
dc.language.isoenen_US
dc.titleOn the use of geometric brownian motion in financial analysisen_US
dc.typeBook Chapteren_US
dc.identifier.doi10.1007/978-3-662-12629-5_149-
crisitem.author.deptDepartment of Economics and Finance-
item.fulltextNo Fulltext-
Appears in Collections:Economics and Finance - Publication
Show simple item record

Page view(s)

55
Last Week
0
Last month
checked on Nov 21, 2024

Google ScholarTM

Impact Indices

Altmetric

PlumX

Metrics


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.