Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.11861/6419
DC FieldValueLanguage
dc.contributor.authorProf. YEUNG Wing Kay, Daviden_US
dc.date.accessioned2021-02-24T04:06:53Z-
dc.date.available2021-02-24T04:06:53Z-
dc.date.issued2013-
dc.identifier.citationInternational Journal of Algebra, 2013, vol. 7(13), pp. 597-606.en_US
dc.identifier.issn1314-7595-
dc.identifier.issn1312-8868-
dc.identifier.urihttp://hdl.handle.net/20.500.11861/6419-
dc.description.abstractIn cooperative dynamic games with non-transferable payoffs, the players' agreed-upon cooperative actions would determine the resulting payoff that each player receives. This article develops a mechanism for the derivation of individual player's payoff functions in cooperative stochastic dynamic games with functions are characterized in an analytically derivable form in such a framework. An illustrative example is provided.en_US
dc.language.isoenen_US
dc.relation.ispartofInternational Journal of Algebraen_US
dc.titleNontransferable individual psyoffs in cooperative stochastic dynamic gamesen_US
dc.typePeer Reviewed Journal Articleen_US
dc.identifier.doi10.12988/ija.2013.3775-
crisitem.author.deptDepartment of Economics and Finance-
item.fulltextNo Fulltext-
Appears in Collections:Economics and Finance - Publication
Show simple item record

Page view(s)

52
Last Week
0
Last month
checked on Feb 19, 2025

Google ScholarTM

Impact Indices

Altmetric

PlumX

Metrics


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.