Please use this identifier to cite or link to this item:
http://hdl.handle.net/20.500.11861/5743
Title: | TaskRec: A task recommendation framework in crowdsourcing systems |
Authors: | Dr. YUEN Man-Ching, Connie King, Irwin Prof. LEUNG Kwong Sak |
Issue Date: | 2015 |
Source: | Neural Processing Letters, Apr. 2015, vol. 41(2), pp. 223-238. |
Journal: | Neural Processing Letters |
Abstract: | Crowdsourcing is evolving as a distributed problem-solving and business production model in recent years. In crowdsourcing paradigm, tasks are distributed to networked people to complete such that a company’s production cost can be greatly reduced. In crowdsourcing systems, task recommendation can help workers to find their right tasks faster as well as help requesters to receive good quality output quicker. However, previously proposed classification based task recommendation approach, which is the only one in the literature, does not consider the dynamic scenarios of new workers and new tasks in the crowdsourcing system. In this paper, we propose a Task Recommendation (TaskRec) framework based on a unified probabilistic matrix factorization, aiming to recommend tasks to workers in dynamic scenarios. Unlike traditional recommendation systems, workers do not provide their ratings on tasks in crowdsourcing systems, thus we infer user ratings from their interacting behaviors. This conversion helps task recommendation in crowdsourcing systems. Complexity analysis shows that our framework is efficient and is scalable to large datasets. Finally, we conduct experiments on real-world datasets for performance evaluation. Experimental results show that TaskRec outperforms the state-of-the-art approach. |
Type: | Peer Reviewed Journal Article |
URI: | http://hdl.handle.net/20.500.11861/5743 |
ISSN: | 1370-4621 1573-773X |
Appears in Collections: | Journalism & Communication - Publication |
Find@HKSYU Show full item record
Page view(s)
137
Last Week
1
1
Last month
checked on Jan 3, 2025
Google ScholarTM
Impact Indices
PlumX
Metrics
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.